

Accurate results for patient care

Traceable and commutable calibrators

JCTLM Working Group for Traceability: Education and Promotion (WG-TEP) Area 2: Mini-presentations to explain scientific concepts

Calibration

Calibration: the process of assigning a value, usually in concentration units, to an instrument response. This represents the functional relationship between the measured values and analytical quantities characterising the type(s) of measurand(s).

Calibrator(s): material of known quantity used to produce a calibration curve from which concentrations of unknowns can be derived. The instrument response changes with increased concentration of unknown.

Traceability

From latin – tractus = drawn From latin – trahere = to draw

- *Trace:* path that someone or something takes
- *Traceable:* if something is traceable, you can find out where it came from, where it has gone, when it began or what its cause was
- Traceability means comparability
- The ability to compare the results of measurements between different laboratories
- The use of a common reference
- <u>Metrological traceability</u> is the property of a measurement <u>result</u> which allows measurements made under different conditions (e.g. at different times, by different people, in different locations, using different measurement procedures) to be compared in a meaningful way

Traceability to SI vs traceability in general

1. Traceability to SI

2. Traceability in general

1. Name/identity of standard

- 2. System
- 3. Unit
- 4. Concentration
- 5. Combined uncertainty

Measuring means comparing

Measurand Categories

Type A Measurands (SI traceable)

 Well defined compounds available in pure form that are traceable to the SI Unit

e.g. electrolytes, urea, glucose, creatinine, uric acid, etc.

Traceable and expressed in molar units (SI unit).

Type B Measurands (Not SI traceable)

 Not a uniform substance: a heterogeneous mixture of substances which may differ from person to person as well as within the same person depending on health and disease status

e.g. human chorionic gonadotropin (hCG), tumour markers, cardiac troponin, etc.

These are not traceable to the SI Unit and are expressed in arbitrary units such as mass units or WHO International units

Type B measurands are generally more suited to harmonisation

~90%

~10%

Commutability of a reference material

- Property of a reference material, demonstrated by the closeness of agreement between the relation among the measurement results for a stated quantity in this material, obtained according to two given measurement procedures, and the relation obtained among the measurement results for other specified materials
 - **NOTE 1** The reference material in question is usually a calibrator and the other specified materials are usually routine samples.
 - **NOTE 2** The measurement procedures referred to in the definition are the one preceding and the one following the reference material (calibrator) in question in a calibration hierarchy (see ISO 17511).
 - **NOTE 3** The stability of commutable reference materials should be monitored regularly.

VIM3 JCGM 200:2012

Commutability

A commutable reference material and fresh patient specimens will show the same analytical response when tested using two (or more) different methods

Lack of commutability

A <u>non-</u>commutable reference material and fresh patient specimens show a different analytical response when tested using two (or more) different methods

It is important to ensure Reference Materials are commutable and suitable for use where they are to be used for calibration of a method

Commutability of the materials

Material	Primary Reference	Secondary Reference	Working Calibrator	Product Calibrator	Patient Sample		Patient
Commutable?	Commutable?	Commutable?	Commutable?	Commutable?	Commutable!		result
Measurement Procedure	Primary Reference Measurement	Secondary Reference Measurement	Manufacturer's Measurement		Routine measurement in a Clinical Laboratory		
Provider	BIPM, National Metrology Institutes, Accredited Reference Laboratories	National Metrology Institutes, Accredited Reference Laboratories	Manufacturer's Laboratory		End User		
Uncertainty							
Uncertainty							

Manufacturer Traceability

Traceability of Method

Calibrator Target Value and Uncertainty

	↓ ↓		V							↓
Азвау	Reference Method/Material Traceability	Calibrator/Control	Target Value Common Units	Total Uncertainty Common Units	Common Units	Conversion Factor	Target Value SI Units	Total Uncertainty SI Units	SI Units	% Uncertainty
Calcium, CPC (CA, CA_c)	Atomic Absorption Method NIST SRM 915, NIST SRM 909b	Siemens Chemistry Calibrator	10.4	0.12	mg/dL	0.25	2.59	0.03	mmol/L	1.16
Calcium_2, Arsenazo III (CA_2, CA_2c)	Inductively Coupled Atomic Emission Method, NIST SRM 915, NIST SRM 909b	Siemens Chemistry Calibrator	10.3	0.19	mg/dL	0.25	2.57	0.05	mmol/L	1.79
Carbon Dloxide Liquid (CO2_L, CO2_c)	Coming 965 Reference Method, NIST SRM 192	CO2 Calibrator/Diluent	29.8	0.80	mEq/L	1	29.80	0.80	mmol/L	2.68
Cholesterol_2 (CHOL_2, CHOL_c)	CDC Reference Method (modified Abell-Kendall) NIST SRM 909b	Siemens Chemistry Calibrator	198.0	2.57	mg/dL	0.0259	5.12	0.07	mmol/L	1.34
Cholinesterase (CHE)	Molar extinction coefficient of reaction product	ADVIA Chemistry Enzyme 1 Calibrator	14200.0	432.4	U/L	1	14200.0	432.4	U/L	3.30
Creatinine_2, Jaffé, sample rate blanked, intercept corrected (CREA_2, CRE_2c)	IDMS Reference Method NIST SRM 967	Siemens Chemistry Calibrator	8.2	0.13	mgidL	88.4	724.9	11.6	µmol/L	1.61
Creatinine Kinase (CKNAC)	IFCC-Reference Method	Chemistry Control 1*	62.0	1.18	114	1	62.0	62.0 1.18	ш	1.88
	IRMM/IFCC-455	Chemistry Control 2*	250.0	2.50	012	1	250.0	2.50		0.98
Creatine Kinase (CK_L)	IFCC Reference Method at 37*C	ADVIA Chemistry Enzyme 3 Calibrator	650	27.6	U/L	1	650	27.6	U/L	4.25
Direct Bilirubin_2 (DBIL_2)	AACC Reference Method NIST SRM 916	Siemens Chemistry Calibrator	3.03	0.03	mg/dL	17.1	51.8	0.47	µmol/L	0.89
Direct HDL Cholesterol (D-HDL)	NCEP Designated Comparison Method	HDL/LDL Cholesterol Calibrator	80.0	0.80	mg/dL	0.0259	2.07	0.02	mmol/L	0.98
Enzymatic Creatinine_2 (ECRE_2)	IDMS Reference Method NIST SRM 914a, NIST SRM 967	Siemens Chemistry Calibrator	8.9	0.04	mg/dL	88.4	786.8	3.5	µmol/L	0.45
Gamma-Glutamyl Transferase (GGT)	IFCC Reference Method at 37°C IRMM/IFCC-452	ADVIA Chemistry Enzyme 1 Calibrator	840.0	50.80	U/L	1	840.0	50.80	U/L	5.90

Example of Manufacturer Traceability

What Constitutes a Reference Method

- Reference Methods are used to assign values to Reference Materials (calibrator or accuracy check)
- Defined measurand
- Reference methods generally will have an end point detection that looks at the molecular species

Reference materials

Reference Material	Usage
Primary Reference Standard	Certified Standard with the highest metrological order. A calibrator with certified purity traceable to the SI unit with associated uncertainty.
Primary Reference Material	Material used for verification of a primary reference method, traceable to the primary reference standard. This material may also be used for verification of a routine method if shown to be commutable.
Secondary Reference Material	Material used for verification of a secondary reference method, traceable to the primary reference standard. This material may also be used for verification of a routine method if shown to be commutable.

It is important to confirm the certification for each certified reference material to ensure it is fit for purpose in the method of choice

Sources of Certified Reference Material and Methods

- JCTLM website hosted by BIPM (<u>http://www.bipm.org/jctlm/</u>)
 - Reference Materials
 - Reference Measurement Methods
 - Reference Measurement Services

Sources of Certified Reference Material and Methods

JCTLM website hosted by BIPM (<u>http://www.bipm.org/jctlm/</u>)

Various Reference Materials for Creatinine

Creatinine: reference standard material

Information specific to each material: quantity, purity, uncertainty etc

Creatinine: reference measurement services

Information specific to each accredited Reference Laboratory: matrix, uncertainty etc

Suppliers of Reference Materials

National Institute of Standards and Technology U.S. Department of Commerce

Reference Material Producers

Producer and distributor

LGC Standards

Material distributors from NIST, ERM, NMIJ etc.

Reference Material Requirements

- Measurand clearly defined
- Readily available
- Known purity with associated uncertainty (for 1° reference standards)
- A stated measurement result, demonstrated traceability with associated uncertainty (CRM)
- Stable under defined storage conditions
- Homogeneous
- Commutable
- Detailed Certificate outlining usage restrictions, reference methods as appropriate etc.
- Meet the requirements of ISO 15194 (required for JCTLM database listing)

Accurate results for patient care