

Traceability in Laboratory Medicine in brief

Authored by Elvar Theodorsson (<u>elvar.theodorsson@liu.se</u>, +46736209471) and reviewed by the JCTLM Traceability Education & Promotion Working group and by other beneficiaries of the JCTLM

BIPM in Paris in 2022

This is a "living document," version 2022-03-23.

Suggestions for improvements are gratefully received.

JCTLM Secretariat

Bureau International des Poids et Mesures Pavillon de Breteuil 92312 Sèvres Cedex France Tel: +33 1 45 07 70 70 Fax: +33 1 45 34 20 21 Email: jctlm@bipm.org

Traceability in Laboratory Medicine in brief

According to the International vocabulary of metrology, traceability **IS** "a *property of a measurement result* that can be related to a *reference* through a documented unbroken chain of calibrations, each contributing to the *measurement uncertainty*" (1).

In Laboratory Medicine, the *reference* must be amongst the following:

- 1. The definition of a SI unit
- 2. A certified value of a *reference material*
- 3. The result of a *reference measuring system*
- 4. The value assigned to an *international conventional reference material*
- 5. The values assigned to international harmonization reference materials

The VIM definition (1) of traceability alone is comprehensive in physics where measurements are direct. The *quality infrastructure of traceability* is self-evident and fulfilled, e.g., when measuring mass, length, time, or temperature. In contrast, the quality infrastructure – known as "pillars of traceability" in Laboratory Medicine must be detailed when claiming traceability since measurements in laboratory medicine are usually indirect and influenced by matrix effects (2-6).

If the quality infrastructure is not detailed in claims of traceability in laboratory medicine, "traceability," like beauty, risks being in the eye of the beholder (7).

Quality infrastructure for traceability

The International Network on Quality Infrastructure (INetQI, <u>https://www.bipm.org/en/liaison-partners/inetqi</u>) has defined five *general components of the quality infrastructure for metrological traceability*:

- 1. Metrology
- 2. Standardization
- 3. Accreditation
- 4. Conformity assessment

5. Market surveillance

In *Laboratory Medicine*, measuring systems used by manufacturers and laboratories alike must be fit for the intended use through validation/verification and appropriate calibration.

The measuring principles used must have been proven *fit for the intended diagnostic use* during both technical- (8, 9) and diagnostic validation (10) to establish that a measuring system fulfills appropriate performance specifications (11-14).

The laboratory must have *documented quality management* through primary education, and continued education of its staff recorded quality systems, e.g., ISO-17025 or ISO-15189, with regular auditing by relevant authorities. The quality system must include optimal internal- and external quality control schemes.

The *external quality assessment* (EQA) should be trueness-based, using commutable-reference value materials.

There must also be documented procedures for monitoring and maintaining traceability of all traceable measurands over *time* (15, 16) since reference materials in Laboratory Medicine have varying and limited shelf-life, which influences the timelines of their traceability.

Traceability IS NOT "traceability" to:

- 1. the producers of the reference materials used for calibrating measuring systems
- 2. to the internal or external quality control samples used in the measurement
- 3. to the manufacturers of the reagents and measuring systems used.

Traceability can currently be claimed solely referring to ISO-17511:2020 (17) and ISO-21151:2020 (18). To what extent will regulators Field (19) or accreditation authorities demand one or more of the fundaments of traceability for valid claims of traceability remains to be seen.

References

- 1. JCGM. International vocabulary of metrology Basic and general concepts and associated terms (VIM 3): Bureau International des Poids et Mesures; 2012 [3 edition:[Available from: https://www.bipm.org/utils/common/documents/jcgm/JCGM 200 2012.pdf.
- 2. Braga F, Panteghini M. Verification of in vitro medical diagnostics (IVD) metrological traceability: responsibilities and strategies. Clinica chimica acta; international journal of clinical chemistry. 2014;432:55-61.
- 3. De Bièvre P, Günzler H. Traceability in chemical measurement. Berlin ; London: Springer; 2004.
- 4. Possolo A, Bruce SS, Watters RL. Metrological Traceability Frequently Asked Questions and NIST Policy. 2021. Contract No.: NIST Technical Note 2156.
- Ellison SLR, Williams A. Eurachem/CITAC Guide: Metrological Traceability in Chemical Measurement. A guide to achieving comparable results in chemical measurement. <u>https://eurachem.org/images/stories/Guides/pdf/ECTRC 2019 EN P1.pdf</u>. Eurachem and CITAC - Cooperation on International Traceability in Analytical Chemistry; 2019.
- 6. Panteghini M. Traceability as a unique tool to improve standardization in laboratory medicine. Clin Biochem. 2009;42(4-5):236-40.
- 7. Belanger BC. Traceability: An Evolving Concept. ASTM Stand News 1980;8:22-8.
- 8. Thompson M, Ellison SLR, Wood R. Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC technical report). Pure Appl Chem. 2002;74(5):835-55.
- 9. Eurachem. The Fitness for Purpose of Analytical Methods (2014) https://www.eurachem.org/index.php/publications/guides/mv. Eurachem; 2014.
- 10. Thedorsson E, Magnuson B. Full method validation in clinical chemistry. Accredit Qual Assur. 2017.
- 11. Panteghini M, Sandberg S. Defining analytical performance specifications 15 years after the Stockholm conference. Clinical chemistry and laboratory medicine : CCLM / FESCC. 2015;53(6):829-32.
- Sandberg S, Fraser CG, Horvath AR, Jansen R, Jones G, Oosterhuis W, et al. Defining analytical performance specifications: Consensus Statement from the 1st Strategic Conference of the European Federation of Clinical Chemistry and Laboratory Medicine. Clinical chemistry and laboratory medicine : CCLM / FESCC. 2015;53(6):833-5.
- 13. Smith AF, Shinkins B, Hall PS, Hulme CT, Messenger MP. Toward a Framework for Outcome-Based Analytical Performance Specifications: A Methodology Review of Indirect Methods for Evaluating the Impact of Measurement Uncertainty on Clinical Outcomes. Clinical chemistry. 2019.
- 14. Thue G, Sandberg S. Analytical performance specifications based on how clinicians use laboratory tests. Experiences from a post-analytical external quality

assessment programme. Clinical chemistry and laboratory medicine : CCLM / FESCC. 2015;53(6):857-62.

- 15. Ehrlich CD, Rasberry SD. Metrological timelines in traceability. Metrologia. 1997;34(6):503-14.
- 16. Ehrlich CD, Rasberry SD. Metrological timelines in traceability. Journal of Research of the National Institute of Standards and Technology. 1998;103(1):93-105.
- 17. ISO. ISO 17511:2020 In vitro diagnostic medical devices Requirements for establishing metrological traceability of values assigned to calibrators, trueness control materials and human samples. Technical Committee : ISO/TC 212 Clinical laboratory testing and in vitro diagnostic test systems. Geneva, Switzerland: International Organization for Standardization; 2020.
- ISO. ISO 21151:2020 In vitro diagnostic medical devices Requirements for international harmonisation protocols establishing metrological traceability of values assigned to calibrators and human samples. Technical Committee : ISO/TC 212 Clinical laboratory testing and in vitro diagnostic test systems. Geneva, Switzerland: International Organization for Standardization; 2020.
- EU. Regulation (EU) 2017/746 of the European Parliament and of the Council of 5 April 2017 on in vitro diagnostic medical devices and repealing Directive 98/79/EC and Commission Decision 2010/227/EU. Brussels2017.